THE LARGEST PRIME DIVIDING THE MAXIMAL ORDER OF AN ELEMENT OF S_{n}

JON GRANTHAM

Abstract

We define $g(n)$ to be the maximal order of an element of the symmetric group on n elements. Results about the prime factorization of $g(n)$ allow a reduction of the upper bound on the largest prime divisor of $g(n)$ to $1.328 \sqrt{n \log n}$.

Let S_{n} be the symmetric group on n letters.
Definition. $g(n)=\max \left\{\operatorname{ord}(\sigma) \mid \sigma \in S_{n}\right\}$.
The first work on $g(n)$ was done by Landau [1] in 1903. He showed that $\log g(n) \sim \sqrt{n \log n}$ as $n \rightarrow \infty$. In 1984, Massias [2] showed an upper bound for $\frac{\log g(n)}{\sqrt{n \log n}}$,

$$
\log g(n) \leq a \sqrt{n \log n} \quad a=1.05313 \ldots, \quad n \geq 1
$$

with a attained for $n=1,319,166$.
Let $P(g(n))$ be the largest prime divisor of $g(n)$. In 1968, Nicolas [4] proved that $P(g(n)) \sim \sqrt{n \log n}$ as $n \rightarrow \infty$. In 1989, Massias, Nicolas, and Robin [3] showed that $P(g(n)) \leq 2.86 \sqrt{n \log n}, n \geq 2$. They conjectured that $\frac{P(g(n))}{\sqrt{n \log n}}$ achieves a maximum $(1.265 \ldots)$ for $n \geq 5$ at $n=215$, with $P(g(215))=43$. They note that improving this bound using the techniques of their proof would require "very extensive computation," and even then would not reduce the constant in the bound below 2 .

Using different techniques, however, we can improve this result to the following

Theorem. For each integer $n \geq 5$, we have

$$
P(g(n)) \leq 1.328 \sqrt{n \log n} .
$$

Our proof begins with the simple observation that

$$
g(n)=\max \left\{\operatorname{ord}(\sigma) \mid \sigma \in S_{n}^{\prime}\right\}
$$

where S_{n}^{\prime} is the subset of S_{n} consisting of elements that are the product of disjoint cycles of prime power length.

[^0]To see this, recall the fact that we can write any $\sigma \in S_{n}$ as the product of disjoint cycles. Then $\operatorname{ord}(\sigma)$ is the least common multiple of the cycle lengths. Consider a cycle of length $a b$ with $(a, b)=1, a, b>1$. The product of a cycle of length a with one of length b also has order $a b$ and is a permutation on fewer elements. Thus, given any element of S_{n}, we may find another that has the same order and is a product of disjoint cycles of prime power length.
Definition. For each natural number M, let $l(M)=\sum_{p^{\alpha} \| M} p^{\alpha}$.
We observe that $l(M)$ is the shortest length of a permutation of order M. Thus, we can characterize $g(n)$ in terms of l as follows:

$$
g(n)=\max \{M \mid l(M) \leq n\} .
$$

In particular, $l(g(n)) \leq n$.
Nicolas [6] describes an algorithm for computing $g(n)$. Employing a variation of this algorithm, I computed exact values of $g(n)$ for $n \leq 500,000$ on a Sun $4 / 390$. The accuracy of the computation was checked by calculating values of $g(n)$ using the set G described in [3] and verifying that they matched those in the computations. Analysis of the computations confirmed that for $5 \leq n \leq 500,000, \frac{P(g(n))}{\sqrt{n \log n}}$ attains a maximum at $n=215$.
Lemma 1 (Nicolas [5]). Let p, p^{\prime}, and q be distinct primes, with $q \geq p+p^{\prime}$. If q divides $g(n)$, then at least one of p and p^{\prime} divides $g(n)$.
Proof. Suppose p and p^{\prime} are primes not dividing $g(n)$. Assume there is a prime $q \geq p+p^{\prime}$ with $q \mid g(n)$. Without loss of generality, $p<p^{\prime}$. Choose k such that

$$
p^{k}+p^{\prime} \leq q \leq p^{k+1}+p^{\prime}-1
$$

Let $M=\frac{p^{k} p^{\prime} g(n)}{q}$. Since $q \mid g(n), M$ is an integer. Then

$$
l(M) \leq l(g(n))+\left(p^{k}+p^{\prime}-q\right) \leq l(g(n)) \leq n
$$

Thus, an element of order M can be written as a permutation on n letters. Also,

$$
\begin{aligned}
p^{k} p^{\prime}-q & \geq p^{k} p^{\prime}-p^{k+1}-p^{\prime}+1=p^{k}\left(p^{\prime}-p\right)-p^{\prime}+1 \\
& \geq p\left(p^{\prime}-p\right)-p^{\prime}+1=(p-1)\left(p^{\prime}-p-1\right) \geq 0
\end{aligned}
$$

Therefore, $p^{k} p^{\prime}>q$, so $M>g(n)$. But $g(n)$ is the maximal order of a permutation on n letters. Thus, we have a contradiction, and the lemma is proven.

Write $q=P(g(n))$. We immediately get the following
Corollary. At most one prime less than $\frac{q}{2}$ fails to divide $g(n)$.
Lemma 2. Suppose $0<\alpha<\beta<1$. If at least one prime in the interval ($\alpha q, \beta q$) divides $g(n)$, then at most one prime in the interval $\left(\sqrt{\beta} q, \frac{(1+\alpha) q}{2}\right)$ fails to divide $g(n)$.
Proof. If two primes in the interval $\left(\sqrt{\beta} q, \frac{(1+\alpha) q}{2}\right)$ fail to divide $g(n)$, call them p and p^{\prime}. Let q^{\prime} be a prime in the interval $(\alpha q, \beta q)$ dividing $g(n)$. Let $M=\frac{p p^{\prime}}{q q^{\prime}} g(n)$. Then

$$
l(M) \leq p+p^{\prime}-q-q^{\prime}+l(g(n)) \leq(1+\alpha) q-q-\alpha q+l(g(n))=l(g(n))
$$

But $p p^{\prime}-q q^{\prime}>(\sqrt{\beta} q)^{2}-q(\beta q)=0$, so $M>g(n)$, giving a contradiction.
Proof of Theorem. By the computations, we may take $n>500,000$. We may also assume $q \geq 1.3 \sqrt{500000 \log 500000}>3329$. Using the results of Schoenfeld [8] for large q, and computations for small $q>3329$, we see that there are always at least two primes in the intervals $\left(\alpha_{i} q, \beta_{i} q\right)$, with $\alpha_{1}=.2426$, $\beta_{1}=.25, \alpha_{2}=.3746, \beta_{2}=.386, \alpha_{3}=.4632, \beta_{3}=.4723, \alpha_{4}=.5248$, $\beta_{4}=.5352, \alpha_{5}=.57, \beta_{5}=.5812, \alpha_{6}=.6044, \beta_{6}=.6162, \alpha_{7}=.6312$, $\beta_{7}=.6435, \alpha_{8}=.6534, \beta_{8}=.6652$, and $\alpha_{9}=.6714, \beta_{9}=.6834$. By Lemma 1, at most one of the two or more primes in any of the first three intervals fails to divide $g(n)$. Applying Lemma 2, we get that at most one prime in each interval $\left(\sqrt{\beta_{i}} q, \frac{\left(1+\alpha_{i}\right) q}{2}\right)$ fails to divide $g(n)$, for $i \leq 3$. This fact in turn implies that at most one prime in each interval $\left(\alpha_{i} q, \beta_{i} q\right)$ fails to divide $g(n)$ for $4 \leq i \leq 9$. Applying Lemma 2 again, we see that at most one prime in each interval $\left(\sqrt{\beta_{i}} q, \frac{\left(1+\alpha_{i}\right) q}{2}\right)$ fails to divide $g(n)$ for $1 \leq i \leq 9$.

We note that these intervals cover $(.5 q, .8357 q)$. So at most ten primes less than $.8357 q$ fail to divide $g(n)$, and they can be at most $\frac{q}{2}, \frac{\left(1+\alpha_{1}\right) q}{2}, \ldots$, and $\frac{\left(1+\alpha_{9}\right) q}{2}$ Ther

Therefore,

$$
g(n) \geq \frac{q \prod_{p \leq .8357 q} p}{\frac{q}{2} \prod \frac{1+\alpha_{i}}{2} q} .
$$

Taking logarithms, we get

$$
\log g(n) \geq \theta(.8357 q)-\log \frac{1}{2}-\sum \log \left(\frac{1+\alpha_{i}}{2} q\right)
$$

where θ is the Chebyshev function, $\theta(x)=\sum_{p \leq x} \log p$.
For $q>3329$ the sum of the last two terms on the right is less than $.01338 q$, so

$$
\log g(n) \geq \theta(.8357 q)-.01338 q
$$

Using the estimates for $\theta(x)$ in [7], we get

$$
\log g(n) \geq .79307 q
$$

From [3], $1.05314 \sqrt{n \log n} \geq \log g(n)$, so

$$
1.328 \sqrt{n \log n} \geq \frac{1.05314}{.79307} \sqrt{n \log n} \geq q
$$

It is likely that further computation would be able to show that $\frac{P(g(n))}{\sqrt{n \log n}}$ attains a maximum at $n=215$ for all $n \geq 5$.

Bibliography

1. E. Landau, Über die Maximalordnung der Permutationen gegebenen Grades, Archiv der Math. und Phys. (1903), 92-103.
2. J.-P. Massias, Majoration explicite de l'ordre maximum d'un élément du groupe symétrique, Ann. Fac. Sci. Toulouse Math. 6 (1984), 269-280.
3. J.-P. Massias, J.-L. Nicolas, and G. Robin, Effective bounds for the maximal order of an element in the symmetric group, Math. Comp. 53 (1989), 665-678.
4. J.-L. Nicolas, Sur l'ordre maximum d'un élément dans le groupe S_{n} des permutations, Acta Arith. 14 (1968), 315-332.
5. Ordre maximal d'un élément du groupe des permutations et "highly composite numbers", Bull. Soc. Math. France 97 (1969), 129-191.
6. \qquad , Calcul de l'ordre maximum d'un élément du groupe symétrique S_{n}, RAIRO Ser. Rouge 3 (1969), 43-50.
7. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
8. L. Schoenfeld, Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$. II, Math. Comp. 30 (1976), 337-360.

Department of Mathematics, University of Georgia, Athens, Georgia 30602
E-mail address: grantham@math.uga.edu

[^0]: Received by the editor January 7, 1992 and, in revised form, March 17, 1994.
 1991 Mathematics Subject Classification. Primary 20B40.
 A portion of this research, including the computations, was done at the Supercomputing Research Center. The author would also like to thank the referee for helpful suggestions.

